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Abstract—The Open radio access network (O-RAN) supports
the multi-class wireless services required in beyond 5th-generation
(B5G) mobile networks. However, it also increases the threat
surface, thus requiring enhanced cyberattack detection mecha-
nisms. To do so, advanced Artificial Intelligence (AI) algorithms
combined with RAN intelligent controllers (RICs) can be leveraged
to detect cyberattacks, such as distributed denial-of-service (DDoS)
attacks. Nevertheless, data privacy becomes a significant concern
when using AI-based operations. To bypass this issue, secured
Federated Learning (FL) can be leveraged. Specifically, training
cyberattack detection models locally and securely communicating
the models’ data for aggregation would guarantee protection
against eavesdropping. In addition, the usage of Peer-to-Peer (P2P)
FL would allow to avoid the centralized FL’s single point of
failure. However, securing P2P FL with encryption/decryption
or using the Secure Average Computation (SAC) would incur
high communication costs that scale poorly with the number of
FL clients. Hence, we propose in this paper a novel P2P FL
strategy that guarantees secure FL, while significantly reducing the
communication cost. Specifically, we incorporate client selection
and transfer learning within the RIC-based P2P FL system to
detect cyberattacks. Through experiments, we demonstrate our
method’s performances across different scenarios with both bal-
anced and unbalanced dataset distributions. Finally, its superiority
in terms of accuracy, robustness, and cost, compared to existing
benchmarks, is illustrated.

Index Terms—5G, Cybersecurity, Cyberattack, FL.

I. INTRODUCTION

Wireless communication technology has become a critical
enabler of emerging technologies such as vehicle-to-everything
(V2X) networks, smart infrastructure, autonomous vehicles,
and the Internet-of-Things (IoT) [1]. Moreover, various emerg-
ing applications such as virtual reality (VR) and Artificial
Intelligence (AI) are being rapidly deployed, resulting in
massive volumes of data traffic [2]. Consequently, wireless
communications have undergone several transformations in the
past decades. With transitions in cellular networks towards the
fifth-generation (5G) and beyond (B5G) [3], 5G networks are
able to support heterogeneous devices, offering them com-
putational resources and seamless connectivity for intelligent
and autonomous operations [1]. In addition, 5G facilitates the
immersive growth of data transmission by providing higher data
rates and lower latency [4].
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However, the advent of 5G brings its share of challenges.
Indeed, the complexity of 5G systems expands the threat
surface and makes it hard to define system boundaries [5].
Furthermore, the early stages and rapid deployment of 5G have
led to a need for greater awareness of threats. For instance,
softwarization, virtualization, and cloudification are critical for
the network’s performance but do introduce several security
breach opportunities. In the same logic, open radio access
networks (O-RANs) enhance 5G multi-vendor interoperability;
however, their risks are significantly high due to the O-RANs’
inherent open and modular architecture [6]. Hence, enhanced
security measures, such as cyberattack detection, are indis-
pensable for O-RAN in 5G. While a considerable amount of
research on cyberattack and anomaly detection using machine
learning (ML) in RAN has been done, only a few studies have
focused explicitly on O-RAN [7].

AI, in particular ML, provides robust, innovative, and dy-
namic solutions for privacy, security, and threat detection in
B5G systems. Yet, one significant challenge lies in achieving
secure and private knowledge share between the ML-based
detection agents [4]. Federated Learning (FL) is a compelling
alternative to guarantee data privacy in such a context. This dis-
tributed ML technique is primarily aimed at ensuring privacy-
preserved collaborative training through sharing model updates
instead of explicitly sharing or accessing raw training data [8].
As such, FL proves to be more suitable than conventional ML
for data privacy. Despite its merits, centralized FL is prone
to defects such as the single point of failure and imbalanced
data distribution. The introduction of Peer-to-Peer (P2P) FL
mitigates, to some extent, these issues [7].

In the context of cyberattack detection, several FL-based
mechanisms have been proposed. In particular, P2P FL is
suggested for complex O-RAN environments, owing to the
hierarchical architecture of the RAN intelligent controllers
(RICs) and data-driven inputs via open interfaces [9]. Amid
this development, a refined method has emerged, called P2P
FL with Secure Average Computation (SAC) [7], and utilizes
averaging and n-out-of-n secret partitioning to counter semi-
honest participants. Despite its interesting results in terms of
accuracy, this approach may incur high communication costs in
large-scale systems. Authors of [7] proposed another variation
of SAC-based P2P FL, where K-means forms clusters based
on the clients’ locations. In this setup, SAC operates within
a given cluster instead of among all peers. Even though this
approach is inherent in the structure of peer networks and can
minimize the communication cost of SAC with clustering, this
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operation did not rely on characteristics intrinsic to the peers’
local datasets or other common criteria, such as data similarities
or peer performance. Alternatively, authors in [10] proposed
Performance-Based Neighbor Selection (PENS), where a client
shares its model and training loss with others targeting to
form a cluster with clients with similar data distributions.
Nevertheless, by sharing their models and training loss, clients
could potentially disclose sensitive information from their local
datasets.

To circumvent the aforementioned issues, we propose in this
paper a novel cyberattack detection system that incorporates
client selection and transfer learning within a RIC and SAC-
based P2P FL. The proposed method is well-suited for O-RAN
to guarantee security, privacy, and low communication costs.
The contributions of our paper can be summarized as follows:

1) We propose a novel RIC and SAC-based P2P FL for
cyberattack detection where clients’ peering undergoes a
prior selection mechanism, in contrast to the conventional
P2P FL where all clients are involved in training.

2) To benefit from P2P FL with client selection, we propose
transfer learning between selected and discarded clients.
While selected clients are directly involved in SAC, the
remaining ones access the resultant global model via
transfer learning. This approach not only curbs commu-
nication costs but also prioritizes top performers.

3) We provide a thorough performance evaluation of our
approach in terms of accuracy and communication effort,
and under different dataset distribution conditions.

The remaining of the paper is structured as follows. Section
II describes the system model. Section III details the proposed
cyberattack detection mechanism, followed by a presentation
of our experimental results in Section IV. Finally, Section V
concludes the paper.

II. SYSTEM MODEL

We consider a 5G O-RAN architecture, where RAN Intel-
ligent Controllers (RIC) are deployed to ensure the resource
management tasks. In essence, RICs are logical controllers
in O-RAN that comply with the 3rd Generation Partnership
Project (3GPP) and Software-Defined Radio Access Network
(SD-RAN) standards. The RICs include Near-real-time RIC
(Near-RT RIC) and Non-real-time RIC (Non-RT RIC), which
are based on Software-Defined Networks (SDN). They conduct
radio resource management tasks, which may be realized with
the help of AI/ML techniques [7], [8], [11].

Given that RICs can be operating in large-scale systems,
besides being ML-based, it is interesting to consider cooper-
ative mechanisms to benefit from each other’s experience. To
do so, federated learning mechanisms can be deployed among
RICs. The primary purpose of FL is to maintain data privacy by
enabling collaborative training of ML models on local datasets
and sharing only model parameters. In particular, decentralized
FL is an attractive approach since it eliminates the need for
an aggregation server, hence alleviating the risks of a single
point of failure and of global model alteration, corruption,

slow convergence, or data misclassification. Furthermore, de-
centralized FL, such as SAC-based P2P FL, provides protection
against semi-honest participants by securing the communication
of model updates [7], [12], [13].

Secure average computation, as illustrated in Fig. 1, has
initially been introduced in [13]. In essence, the roles of
SAC input/output in distributed FL and of the aggregation
server in centralized FL are the same, i.e., they average the
participants’ model updates into a global model. However, their
transmissions within the FL framework differ. In particular,
the SAC relies on two mechanisms, namely lightweight n-
out-of-n secret partitioning and secure multi-party average
calculation that leverages the partitioning method. In the secret
partitioning method, each Agentj (j ∈ {1, . . . , N}) generates
N positive random numbers {rnj1, . . . , rnjN}, which are
then used to compute the percentage distributions, denoted as
prnj1, . . . , prnjN , such that:

prnji =
rnji∑N

k=1 rnjk

, (i, j) ∈ {1, . . . , N}2, (1)

where N indicates the number of Agents in the P2P FL
environment. Subsequently, the percentage distributions are
used to generate N partial weights {wj1, . . . , wjN} given by

wji = wj × prni, (i, j) ∈ {1, . . . , N}2, (2)

where wj indicates the model update of Agentj . For instance,
Agent1 has w1 = 30 as the model update. This update is
partitioned securely into w11 = 4, w12 = 13, and w13 = 13
as shown in Fig. 1. The resulting {wj1, . . . , wjN } will be used
in the second method, i.e., the multi-party average calculation.
Specifically, each Agentj keeps its partial weights wjj and
shares the other parts wji with the respective Agenti, ∀i ∈
{1, . . . , N} and i ̸= j. To illustrate this mechanism in Fig. 1,
Agent1 keeps w11 = 4 and shares w12 = 13 with Agent2
and w13 = 13 with Agent3. Next, each Agentj computes its
subtotal psj as

psj =

N∑
i=1

wji, j ∈ {1, . . . , N}. (3)

Then, it computes the aggregated SAC weights S and the
averaged weight Avg as follows:

S =

N∑
j=1

psj and Avg =
S

N
. (4)

III. PROPOSED SAC-BASED P2P FL-ASTL FOR
CYBERATTACKS DETECTION

A. Description

We propose a communication-efficient SAC-based P2P FL
framework that integrates agent selection and transfer learning,
called SAC-based P2P FL-ASTL. Initially, client (or agent)
selection for peering is realized based on the client’s per-
formance in each round. Then, selected clients participate in
SAC to generate a global model. For efficient SAC peering,
we select at each round only the agents that have a good



Fig. 1: Secure Average Computation (SAC) with three agents.

performance, in terms of accuracy, calculated based on their
local validation dataset. Consequently, the global model is
derived while ensuring the protection of both the model updates
and performance through SAC. To strengthen the protection of
datasets within the FL framework, each agent utilizes a distinct
local validation dataset to generate the performance metrics,
thus differently from the conventional FL.

In the literature, a trade-off between communication costs,
computation costs, and privacy can be identified. For instance,
encryption improves privacy but increases the computation cost
due to encryption and decryption operations. In our approach,
we aim to balance between communication costs and privacy.
Specifically, we propose a novel methodology that reduces
communication events within the large-scale SAC-based P2P
FL, without compromising the privacy of both model updates
and local datasets. The operation of our method operates based
on two main steps, namely, “Initialization” and “Learning
Process”, which are iteratively executed for all FL rounds.
B. Operation

Let our system consists of N clients (e.g. agents) denoted
as AN = {A1, . . . , AN}, where each agent Ai has a local
training dataset Di and a local validation dataset Vi from
D = {D1, . . . , DN} and V = {V1, . . . , VN}, respectively. Our
method operates as follows:

1) Initialization: It involves multiple steps as summarized
in lines 1 to 6 in Algorithm 1. First, in each round, agent
Ai starts training from Di to update its model weights
wi. Then, it uses its validation dataset Vi to generate its
local performance metrics, namely F1-score, denoted F1i
and accuracy Acci.

2) Learning process: This corresponds to the operations
of lines 6 and 14 of Algo. 1.Specifically, it comprises
three steps, namely agent selection, global model design,

Algorithm 1 Proposed SAC-based P2P FL-ASTL

Input: Number of agents N , training datasets D, validation
datasets V , number of FL rounds T .

Initialization:
1: for i = 1 to N do
2: Get wi after local training of Di.
3: Test the updated model wi on validation dataset Vi.
4: Get F1i and Acci
5: end for
6: Update W = {w1, . . . , wN} using Algorithm 2

SAC-based P2P FL for subsequent FL rounds:
7: while t ≤ T do
8: for i = 1 to N do
9: Train local dataset Di using WAk

for ε episodes.
10: Get the updated model w′

i.
11: Test the updated model on validation dataset Vi.
12: Get F1i and Acci.
13: end for
14: Update W = {w1, . . . , wN} using Algorithm 2
15: end while

and transfer learning, as summarized in Algorithm 2. In
the first phase (Algo. 2, lines [1-11]), each engages in
SAC to securely exchange validation dataset metrics, i.e.,
F1-score and accuracy. Then, the average F1-score and
accuracy are shared among all agents. To be selected for
peering, each agent Ai verifies that it satisfies the condi-
tions F1i ≥ AvgF1 and Acci ≥ Avgacc. Subsequently,
we have

S = {Ai | F1i ≥ AvgF1 and Acci ≥ Avgacc} . (5)



Algorithm 2 Learning Process

Input: Number of agents N, performancemetrics :
[F1i, Acci]i=1,...,N

Agent selection:
1: function SELECT(N, [F1i, Acci]i=1,...,N )
2: Get AvgF1 ← SAC(N, [F1i]i=1,...,N )
3: Get Avgacc ← SAC(N, [Acci]i=1,...,N )
4: Initialize an empty set S for selected agents
5: for i = 1 to N do
6: Assign Ai to set S based on eq.(5)
7: end for
8: return S
9: end function

10: Get AK = {A1, . . . , AK} ← S % Set of selected agents
11: Get AR = {Ai, . . . , AR} = AN \AK % Set of disre-

garded agents

Global model design:
12: Get WAK ← SAC(AK,K)

Transfer learning:
13: Update wi,∀i ∈ AR using eq.(6)

Let AK = {A1, . . . , AK} and AR = {Ai, . . . , AR} be
the sets of selected and disregarded agents, respectively.
Then, in the second phase (Algo. 2, line 12), selected
agents participate in SAC to generate the global model
WAk

, following steps in (1)-(4). During the final phase,
transfer learning for the global model WAk

occurs, where
the model is transferred to the disregarded agents of set
AR such that

wi = WAK ,∀Ai ∈ AR, (6)

where wi refers to the learning model of agent Ai.
3) SAC-based P2P FL-ASTL for subsequent rounds:

For the following FL rounds, the same initialization and
learning processes are successively executed until the last
FL round is reached. This is emphasized in lines 7-15 of
Algo. 1.

C. Analysis of the Communication Effort:

In one hand, within the conventional SAC-based P2P FL,
each agent shall transmit the computed partitions and subtotals
of W model weight values to the other (N − 1) agents in each
FL round [13]. Thus, the total communication effort per round
can be computed as 2WN(N−1) and the total communication
effort is given by

c = 2WN(N − 1)T. (7)

On the other hand, due to the designed learning process that
involves agent selection, our proposed method requires less
effort for training. Specifically, in a given round t, Kt agents
engage in SAC. Consequently, the communication effort for
training in round t is ct,1 = 2WKt(Kt − 1), ∀t = 1, . . . , T .
Moreover, due to the SAC-based exchange of averaged F1

AvgF1 and Accuracy Avgacc, a communication effort of ct,2 =
2QN(N − 1), where Q is the cost for averaging. Finally, due
to transfer learning, a broadcast effort of ct,3 = W is needed.
Subsequently, the total communication effort of a single round
for the proposed solution is ct,1+ct,2+ct,3, and the total effort
can be written as:

c′ =

T∑
t=1

(ct,1 + ct,2 + ct,3) (8)

=

T∑
t=1

(2WKt(Kt − 1) + 2QN(N − 1) +W ) .

Finally, for the conventional centralized FL [14], the com-
munication effort can be evaluated as:

c′′ = W (N + 1)T, (9)

since it requires N transmissions from the agents to the
central aggregator to upload their model parameters and only
a broadcast transmission from the aggregator to the agents to
update their global models.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the performances of our proposed
FL method, denoted by “SAC-based P2P FL-ASTL”, to detect
cyberattacks in the network traffic in terms of accuracy and
communication effort. We will compare our approach to the
conventional “Centralized FL” [14], and decentralized “SAC-
based P2P FL” [7].

A. Dataset Setup

For cyberattack detection, we have chosen the UNSW-
NB15 dataset, which is a modern Network Intrusion Detection
Systems (NIDS) dataset [15]. The UNSW-NB15 dataset has
nine classes of attacks. Each attack category contains a set of
records, and each record has 49 extracted features.

Pre-Processing Steps: We have considered a subset of the
UNSW-NB15 dataset (2 data files out of the four available) and
pre-processed it to be suitable for the purpose of cyberattack
detection in O-RAN. Specifically, we merged the data of
the two files and removed six non-relevant features, namely
{srcip, dstip, attack cat, ct flw http mthd, is ftp login,
ct ftp cmd}. The first three features have been eliminated for
effective detection since, in real-world scenarios, network flows
lack attack categories, and IP addresses may be dynamic or
manipulated through IP spoofing. The other three features have
been discarded due to their significant number of null values.
As a result, each record has now 43 features. Furthermore, pre-
processing steps such as splitting, feature/categorical encoding,
and normalizing have been applied. The dataset has been
partitioned into training, validation, and testing datasets. Each
agent in the system has local training and validation datasets,
and a final testing dataset to evaluate the global model.

Dataset Distribution: Following the pre-processing steps,
the remaining dataset includes 150,000 records, to be dis-
tributed among N = 100 agents for training and validation,
with an additional separate test dataset comprising 10,000
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Fig. 2: Accuracy of: SAC-based P2P FL-ASTL (top row); Several FL methods (down row), with different data distributions.

records for global model testing. Within the records, 60%
represent the attack classes. Each agent receives 1,500 records
split (80%, 20%) between training and local validation. The
partition of the attack classes at each agent depends on the type
of distribution, i.e., independently and identically distributed
(IID), or non-IID. For IID data distribution, agents have an
equal attack class partition of 60%. In contrast, for non-IID
data distribution, the partition of the attack class was varied
randomly within specific ranges of attack class partitions, in
particular, we designed the range [20%, 40%] for the intense
non-IID setting and [30%, 60%] for the moderate non-IID
setting.

B. FL Model Architecture and Hyperparameters Selection

We adopt a deep learning (DL) architecture comprising four
layers for our system. Specifically, the input layer is tailored to
handle 42 features, followed by two dense hidden layers with 30
and 10 neurons, respectively. The architecture concludes with
an output layer consisting of two neurons and is accompanied
by a softmax layer for probabilistic classification between
“attack” and “no attack”. The ReLU activation function is ap-
plied to the hidden layers, supplemented by L1 regularization.
Throughout our experiments, we set the learning rate to 10−4

and the batch size to 100. Also, we run FL for T = 50 rounds,
where, in each round, an FL agent trains locally for ε = 10
episodes.

C. Results

In Table I, we evaluate and compare the communication
effort results for the proposed “SAC-based P2P FL-ASTL”,
and the two benchmarks “Centralized FL” and “SAC-based

TABLE I: Communication Effort Results

# model
weight values

Avg. commun.
effort per

round (MB)

Total
commun.

effort (MB)
Centralized

FL c′′ = 163822 0.625 31.25

SAC-based
P2P FL c = 32115600 122.55 6127.5

SAC-based
P2P

FL-ASTL
avg. c′ = 8068500 31.92 1595.6

P2P FL”. We assume here an IID distribution of datasets,
and that the FL model at any agent has W = 1622 weight
values. According to Table I, the Centralized FL has the lowest
communication effort, approximately 31.25 megabytes (MB),
compared to the other methods. This is expected since it relies
on a very low number of transmissions to/from the aggregation
server. However, we notice that SAC-based P2P FL presents
the highest communication effort, around 6127 MB, due to the
necessary data exchanges among all N = 100 agents within
the FL system. Finally, the proposed method demonstrates a
communication effort reduction of 74% compared to SAC-
based P2P FL, due to its support of agent selection and transfer
learning. Even though Centralized FL achieves the lowest
communication effort, it is prone to security breaches and
failures due to its centralized architecture and lack of security
mechanisms.

Fig. 2 depicts the global accuracy of our proposed approach
(top row), then compared to the benchmarks (down row), for
both IID and non-IID distributions. Looking at the top row of
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Fig. 2, SAC-based P2P FL-ASTL converges after 19, 23, and 42
rounds and at accuracy values above 98.6%, 98.4%, and 96.5%,
for the IID, moderate non-IID, and intense non-IID cases,
respectively. Clearly, our approach is efficient in detecting
cyberattacks. However, as non-IIDness increases, convergence
slows down and accuracy negligibly degrades (between 0.3%
and 2%), which demonstrates the robustness of our method in
non-IID settings. This result is also in line with the increasing
variance of the accuracy performance at convergence (area
between red dashed lines).

When compared to the benchmarks in the down row of Fig.
2, we notice that all methods converge almost to the same accu-
racy values, meaning that they demonstrate similar robustness
levels with respect to dataset non-IIDness. Nevertheless, our
approach converges faster in the IID setting at round 19, while
centralized FL and SAC-based P2P FL converge starting from
rounds 23 and 25, respectively.

To understand the behavior of our proposed method, we plot
in Fig. 3 the selection rates of 50 agents among the 100 avail-
able ones that perform FL, in both settings IID (blue) and non-
IID (red). We notice that the selection rate varies significantly
among agents, reflecting the system’s adaptability in choosing
agents based on their best F1 and accuracy performances. When
an agent has a high selection rate, nearing 1, it indicates a
higher likelihood of being selected over others in most rounds.
The selection rate varies more in the non-IID setting compared
to the IID one. This strategic selection in non-IID conditions
highlights the model’s robustness by maintaining performance
and reducing the impact of unbalanced data distributions by
adaptively modifying its dependence on different agents.

V. CONCLUSION

To bypass the single point of failure and security risks
of Centralized FL, we propose here a novel SAC-based P2P
FL-ASTL method adapted for use within the RICs of O-
RAN network to detect cyberattacks. Unlike the conventional
SAC-based P2P FL, we aim to reduce the communication
effort through the integration of two mechanisms, namely
agent selection and transfer learning. Agent selection has been

developed in a secure manner where only agents presenting
high performances, in terms of F1-score and accuracy, are
allowed into P2P FL, while transfer learning ensures that
all involved FL agents benefit from the SAC-based P2P FL.
This approach enhances security in parameter sharing and
reduces SAC’s computational burden, especially with numerous
trainers, paving the way for a more secure and streamlined
O-RAN in 5G and beyond. Through experiments that used
the modern UNSW-NB15 cyberattack dataset, we evaluated
the performances of our approach in terms of communication
effort and accuracy. The proposed SAC-based P2P FL-ASTL
method succeeded in cutting the communication effort of the
conventional SAC-based P2P FL by 74% while maintaining
equivalent or higher accuracy performances than benchmarks.
Finally, our approach has been proven robust against moderate
and intense dataset non-IIDness, with a negligible degradation
in accuracy (below 2%).
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